
Predictive Maintenance Toolbox™
User's Guide

R2018a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Predictive Maintenance Toolbox™ User's Guide
© COPYRIGHT 2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2018 Online only New for Version 1.0 (Release 2018a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


Manage System Data
1

Data Ensembles for Condition Monitoring and Predictive
Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Data Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Ensemble Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Ensemble Data in Predictive Maintenance Toolbox . . . . . . . . . 1-6
Convert Ensemble Data into Tall Tables . . . . . . . . . . . . . . . . 1-11
Processing Ensemble Data . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12

Generate and Use Simulated Data Ensemble . . . . . . . . . . . . . 1-13

File Ensemble Datastore With Measured Data . . . . . . . . . . . . 1-21

Preprocess Data
2

Data Preprocessing for Condition Monitoring and Predictive
Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Basic Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Time-Domain Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Frequency-Domain (Spectral) Preprocessing . . . . . . . . . . . . . . 2-4
Time-Frequency Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 2-5

iii

Contents



Identify Condition Indicators
3

Condition Indicators for Monitoring, Fault Detection, and
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Signal-Based Condition Indicators . . . . . . . . . . . . . . . . . . . . . . 3-4
Time-Domain Condition Indicators . . . . . . . . . . . . . . . . . . . . . 3-4
Frequency-Domain Condition Indicators . . . . . . . . . . . . . . . . . 3-6
Time-Frequency Condition Indicators . . . . . . . . . . . . . . . . . . . 3-6

Model-Based Condition Indicators . . . . . . . . . . . . . . . . . . . . . . . 3-8
Static Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
Dynamic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
State Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11

Detect and Predict Faults
4

Decision Models for Fault Detection and Diagnosis . . . . . . . . . 4-2
Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Statistical Distribution Fitting . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Regression with Dynamic Models . . . . . . . . . . . . . . . . . . . . . . 4-5
Control Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Changepoint Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Models for Predicting Remaining Useful Life . . . . . . . . . . . . . . 4-8
RUL Estimation Using Identified Models or State

Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
RUL Estimation Using RUL Estimator Models . . . . . . . . . . . . 4-10
Choose an RUL Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
Similarity Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
Degradation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
Survival Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13

iv Contents



Deploy Predictive Maintenance Algorithms
5

Deploy Predictive Maintenance Algorithms . . . . . . . . . . . . . . . 5-2
Specifications and Requirements . . . . . . . . . . . . . . . . . . . . . . 5-2
Design and Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Implement and Deploy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Software and System Integration . . . . . . . . . . . . . . . . . . . . . . 5-5
Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5

v





Manage System Data

• “Data Ensembles for Condition Monitoring and Predictive Maintenance”
on page 1-2

• “Generate and Use Simulated Data Ensemble” on page 1-13
• “File Ensemble Datastore With Measured Data” on page 1-21
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Data Ensembles for Condition Monitoring and Predictive
Maintenance

Data analysis is the heart of any condition monitoring and predictive maintenance activity.
The data can come from measurements on systems using sensors such as accelerometers,
pressure gauges, thermometers, altimeters, voltmeters, and tachometers. You might have
access to measured data from:

• Normal system operation
• The system operating in a faulty condition
• Lifetime record of system operation (run-to-failure data)

For algorithm design, you can also use simulated data generated by running a Simulink
model of your system under various operating and fault conditions.

Whether using measured data, generated data, or both, you frequently have many signals,
ranging over a time span or multiple time spans. You might also have signals from many
machines (for example, measurements from 100 separate engines all manufactured to the
same specifications). And, you might have data representing both healthy operation and
fault conditions. In any case, designing algorithms for predictive maintenance requires
organizing and analyzing large amounts of data while keeping track of the systems and
conditions the data represents.

Predictive Maintenance Toolbox provides tools called ensemble datastores for creating,
labeling, and managing such data sets. Ensemble datastores can help you work with data
that is stored locally or in a remote location such as cloud storage using Amazon S3™
(Simple Storage Service), Windows Azure® Blob Storage, and Hadoop® Distributed File
System (HDFS™).

Data Ensembles
The main unit for organizing and managing multifaceted data sets in Predictive
Maintenance Toolbox is the data ensemble. An ensemble is a collection of data sets,
created by measuring or simulating a system under varying conditions.

For example, consider a transmission gear box system in which you have an
accelerometer to measure vibration and a tachometer to measure the engine shaft
rotation. Suppose that you run the engine for five minutes and record the measured
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signals as a function of time. You also record the engine age, measured in miles driven.
Those measurements yield the following data set.

Now suppose that you have a fleet of many identical engines, and you record data from all
of them. Doing so yields a family of data sets.

This family of data sets is an ensemble, and each row in the ensemble is a member of the
ensemble.

The members in an ensemble are related, in the sense that they contain the same data
variables. For instance, in the illustrated ensemble, all members include the same four
variables: an engine identifier, the vibration and tachometer signals, and the engine age.
In that example, each member corresponds to a different machine. Your ensemble might
also include that set of data variables recorded from the same machine at different times.
For instance, the following illustration shows an ensemble that includes multiple data sets
from the same engine recorded as the engine ages.
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Simulated Ensemble Data

In many cases, you have no real failure data from your system, or only limited data from
the system in fault conditions. If you have a Simulink model that approximates the
behavior of the actual system, you can generate a data ensemble by simulating the model
repeatedly under various conditions and logging the simulation data. For instance, you
can:

• Vary parameter values that reflect the presence or absence of a fault. For example, use
a very low resistance value to model a short circuit.

• Injecting signal faults. Sensor drift and disturbances in the measured signal affect the
measured data values. You can simulate such variation by adding an appropriate
signal to the model. For example, you can add an offset to a sensor to represent drift,
or model a disturbance by injecting a signal at some location in the model.

• Vary system dynamics. The equations that govern the behavior of a component may
change for normal and faulty operation. In this case, the different dynamics can be
implemented as variants of the same component.

For example, suppose that you have a Simulink model that describes a gear-box system.
The model contains a parameter that represents the drift in a vibration sensor. You
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simulate this model at different values of sensor drift, and configure the model to log the
vibration and tachometer signals for each simulation. These simulations generate an
ensemble that covers a range of operating conditions. Each ensemble member
corresponds to one simulation, and records the same data variables under a particular set
of conditions.

Ensemble Variables
The variables in your ensemble serve different purposes, and accordingly can be grouped
into several types:

• Data variables — The main content of the ensemble members, including measured
data and derived data that you use for analysis and development of predictive
maintenance algorithms. For example, in the illustrated gear-box ensembles,
Vibration and Tachometer are the data variables. Data variables can also include
derived values, such as the mean value of a signal, or the frequency of the peak
magnitude in a signal spectrum.

• Independent variables — The variables that identify or order the members in an
ensemble, such as timestamps, number of operating hours, or machine identifiers. In
the ensemble of measured gear-box data, Age is an independent variable.

• Condition variables — The variables that describe the fault condition or operating
condition of the ensemble member. Condition variables can record the presence or
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absence of a fault state, or other operating conditions such as ambient temperature. In
the ensemble of simulated gear-box data, Sensor Drift is a condition variables.
Condition variables can also be derived values, such as a single scalar value that
encodes multiple fault and operating conditions.

Ensemble Data in Predictive Maintenance Toolbox
With Predictive Maintenance Toolbox, you manage and interact with ensemble data using
ensemble datastore objects. In MATLAB®, time-series data is often stored as a vector or a
timetable. Other data might be stored as scalar values (such as engine age), logical
values (such as whether a fault is present or not), strings (such as an identifier), or tables.
Your ensemble can contain any data type that is useful to record for your application. In
an ensemble, you typically store the data for each member in a separate file. Ensemble
datastore objects help you organize, label, and process ensemble data. Which ensemble
datastore object you use depends on whether you are working with measured data on
disk, or generating simulated data from a Simulink.

• simulationEnsembleDatastore objects — Manage data generated from a Simulink
model using generateSimulationEnsemble.

• fileEnsembleDatastore objects — Manage any other ensemble data stored on
disk, such as measured data.

The ensemble datastore objects contain information about the data stored on disk and
allow you to interact with the data. You do so using commands such as read, which
extracts data from the ensemble into the MATLAB workspace, and
writeToLastMemberRead, which writes data to the ensemble.

Last Member Read

When you work with an ensemble, the software keeps track of which ensemble member it
has most recently read. When you call read, the software selects the next member to
read and updates the LastMemberRead property of the ensemble to reflect that member.
When you next call writeToLastMemberRead, the software writes to that member.

For example, consider the ensemble of simulated gear-box data. When you generate this
ensemble using generateSimulationEnsemble, the data from each simulation run is
logged to a separate file on disk. You then create a simulationEnsembleDatastore
object that points to the data in those files. You can set properties of the ensemble object
to separate the variables into groups such as independent variables or condition
variables.
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Suppose that you now read some data from the ensemble object, ensemble.

data = read(ensemble);

The first time you call read on an ensemble, the software designates some member of the
ensemble as the first member to read. The software reads selected variables from that
member into the MATLAB workspace, into a table called data. (The selected variables
are the variables you specify in the SelectedVariables property of ensemble.) The
software updates the property ensemble.LastMemberRead with the file name of that
member.

Until you call read again, the last-member-read designation stays with the ensemble
member to which the software assigned it. Thus, for example, suppose that you process
data to compute some derived variable, such as the frequency of the peak value in the
vibration signal spectrum, VibPeak. You can append the derived value to the ensemble
member to which it corresponds, which is still the last member read. To do so, first
expand the list of data variables in ensemble to include the new variable.

ensemble.DataVariables = [ensemble.DataVariables; "VibPeak"]

This operation is equivalent to adding a new column to the ensemble, as shown in the
next illustration. The new variable is initially populated in each ensemble by a missing
value. (See missing for more information.)
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Now, use writeToLastMemberRead to fill in the value of the new variable for the last
member read.

newdata = table(VibPeak,'VariableNames',{'VibPeak'});
writeToLastMemberRead(ensemble,newdata);

In the ensemble, the new value is present, and the last-member-read designation remains
on the same member.
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The next time you call read on the ensemble, it determines the next member to read, and
returns the selected variables from that member. The last-member-read designation
advances to that member.

The hasdata command tells you whether all members of the ensemble have been read.
The reset command clears the "read" designation from all members, such that the next
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call to read operates on the first member of the ensemble. The reset operation clears the
LastMemberRead property of the ensemble, but it does not change other ensemble
properties such as DataVariables or SelectedVariables. It also does not change any
data that you have written back to the ensemble. For an example that shows more
interactions with an ensemble of generated data, see “Generate and Use Simulated Data
Ensemble” on page 1-13.

Reading Measured Data

Although the previous discussion used a simulated ensemble as an example, the last-
member-read designation behaves the same way in ensembles of measured data that you
manage with fileEnsembleDatastore. However, when you work with measured data,
you have to provide information to tell the read and writeToLastMemberRead
commands how your data is stored and organized on disk.

You do so by setting properties of the fileEnsembleDatastore object to functions that
you write. For instance, set the DataVariablesFcn property to the handle of a function
that describes how to read the data variables from a data file. You can also provide
functions that describe how to read the independent variables and condition variables.
When you call read, it compares the SelectedVariables property of the file ensemble
with the DataVariables, IndependentVariables, and ConditionVariables
properties to determine which functions to use to read each of the selected variables.

Similarly, you use the WriteToMemberFcn property of the fileEnsembleDatastore
object to provide a function that describes how to write data to a member of the
ensemble.

For an example that shows these interactions with an ensemble of measured data, see
“File Ensemble Datastore With Measured Data” on page 1-21.

Ensembles and MATLAB Datastores

Ensembles in Predictive Maintenance Toolbox are a specialized kind of MATLAB datastore
(see “Getting Started with Datastore” (MATLAB)). The read and
writeToLastMemberRead commands have behavior that is specific to ensemble
datastores. Additionally, the following MATLAB datastore commands work with ensemble
datastores the same as they do with other MATLAB datastores.

• hasdata — Determine whether an ensemble datastore has members that have not yet
been read.
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• reset — Restore an ensemble datastore to the state where no members have yet been
read. In this state, there is no current member. Use this command to reread data you
have already read from an ensemble.

• tall — Convert ensemble datastore to tall table. (See “Tall Arrays” (MATLAB)).
• progress — Determine what percentage of an ensemble datastore has been read.
• partition — Partition an ensemble datastore into multiple ensemble datstores for

parallel computing.
• numpartitions — Determine number of datastore partitions.

Convert Ensemble Data into Tall Tables
Some functions, such as many statistical analysis functions, can operate on data in tall
tables, which let you work with out-of-memory data that is backed by a datastore. You can
convert data from an ensemble datastore into a tall table for use with such analysis
commands using the tall command.

When working with large ensemble data, such as long time-series signals, you typically
process them member-by-member in the ensemble using read and
writeToLastMemberRead. You process the data to compute some feature of the data
that can serve as a useful condition indicator for that ensemble member.

Typically, your condition indicator is a scalar value or some other value that takes up less
space in memory than the original unprocessed signal. Thus, once you have written such
values to your datastore, you can use tall and gather to extract the condition
indicators into memory for further statistical processing, such as training a classifier.

For example, suppose that each member of your ensemble contains time-series vibration
data. For each member, you read the ensemble data and compute a condition indicator
that is a scalar value derived from a signal-analysis process. You write the derived value
back to the member. Suppose that the derived value is in an ensemble variable called
Indicator and a label containing information about the ensemble member (such as a
fault condition) is in a variable called Label. To perform further analysis on the
ensemble, you can read the condition indicator and label into memory, without reading in
the larger vibration data. To do so, set the SelectedVariables property of the
ensemble to the variables you want to read. Then use tall to create a tall table of the
selected variables, and gather to read the values into memory.

ensemble.SelectedVariables = ["Indicator","Label"];
featureTable = tall(ensemble);
featureTable = gather(featureTable);
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The resulting variable featureTable is an ordinary table residing in the MATLAB
workspace. You can process it with any function that supports the MATLAB table data
type.

For examples that illustrate the use of tall and gather to manipulate ensemble data for
predictive maintenance analysis, see:

• “Rolling Element Bearing Fault Diagnosis”
• “Using Simulink to Generate Fault Data”

Processing Ensemble Data
After organizing your data in an ensemble, the next step in predictive maintenance
algorithm design is to preprocess the data to clean or transform it. Then you process the
data further to extract condition indicators, which are data features that you can use to
distinguish healthy from faulty operation. For more information, see:

• “Data Preprocessing for Condition Monitoring and Predictive Maintenance” on page 2-
2

• “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2

See Also
fileEnsembleDatastore | generateSimulationEnsemble | read |
simulationEnsembleDatastore

More About
• “Generate and Use Simulated Data Ensemble” on page 1-13
• “File Ensemble Datastore With Measured Data” on page 1-21
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Generate and Use Simulated Data Ensemble
This example shows how to generate a data ensemble for predictive-maintenance
algorithm design by simulating a Simulink® model of a machine while varying a fault
parameter. The example then illustrates some of the ways you interact with a simulation
ensemble datastore. The example shows how to read data from the datastore into the
MATLAB® workspace, process the data to compute derived variables, and write the new
variables back to the datastore.

The model in this example is a simplified version of the gear-box model described in
“Using Simulink to Generate Fault Data”. Load the Simulink model.

mdl = 'TransmissionCasingSimplified';
open_system(mdl)

For this example, only one fault mode is modeled. The gear-tooth fault is modeled as a
disturbance in the Gear Tooth fault subsystem. The magnitude of the disturbance is
controlled by the model variable ToothFaultGain, where ToothFaultGain = 0
corresponds to no gear tooth fault (healthy operation).

 Generate and Use Simulated Data Ensemble
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Generate the Ensemble of Simulated Data

To generate a simulation ensemble datastore of fault data, you use
generateSimulationEnsemble to simulate the model at different values of
ToothFaultGain, ranging from -2 to zero. This function simulates the model once for
each entry in an array of Simulink.SimulationInput objects that you provide. Each
simulation generates a separate member of the ensemble. Create such an array, and use
setVariable to assign a tooth-fault gain value for each run.

toothFaultValues  = -2:0.5:0; % 5 ToothFaultGain values

for ct = numel(toothFaultValues):-1:1
    tmp = Simulink.SimulationInput(mdl);
    tmp = setVariable(tmp,'ToothFaultGain',toothFaultValues(ct));
    simin(ct) = tmp;
end

For this example, the model is already configured to log certain signal values, Vibration
and Tacho, as well as state values xout and xfinal (see “Export Signal Data Using
Signal Logging” (Simulink)). generateSimulationEnsemble function further
configures the model to:

• Save logged data to files in the folder you specify
• Use the timetable format for signal logging
• Store each Simulink.SimulationInput object in the saved file with the

corresponding logged data.

Specify a location for the generated data. For this example, save the data to a folder
called Data within your current folder. The indicator status is true if all the
simulations complete without error.

mkdir Data
location = fullfile(pwd,'Data');
[status,E] = generateSimulationEnsemble(simin,location);

[19-Jan-2018 13:25:13] Running SetupFcn...
[19-Jan-2018 13:25:13] Running simulations...
[19-Jan-2018 13:25:31] Completed 1 of 5 simulation runs
[19-Jan-2018 13:25:37] Completed 2 of 5 simulation runs
[19-Jan-2018 13:25:43] Completed 3 of 5 simulation runs
[19-Jan-2018 13:25:48] Completed 4 of 5 simulation runs
[19-Jan-2018 13:25:54] Completed 5 of 5 simulation runs
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status

status = logical
   1

Finally, create the simulation ensemble datastore using the generated data. The resulting
simulationEnsembleDatastore object points to the generated data. The object lists
the data variables in the ensemble, and by default all the variables are selected for
reading.

ensemble = simulationEnsembleDatastore(location)

ensemble = 
  simulationEnsembleDatastore with properties:

           DataVariables: [6×1 string]
    IndependentVariables: [0×0 string]
      ConditionVariables: [0×0 string]
       SelectedVariables: [6×1 string]
              NumMembers: 5
          LastMemberRead: [0×0 string]

ensemble.DataVariables

ans = 6×1 string array
    "SimulationInput"
    "SimulationMetadata"
    "Tacho"
    "Vibration"
    "xFinal"
    "xout"

ensemble.SelectedVariables

ans = 6×1 string array
    "SimulationInput"
    "SimulationMetadata"
    "Tacho"
    "Vibration"
    "xFinal"
    "xout"

 Generate and Use Simulated Data Ensemble

1-15



Read Data from Ensemble Members

Suppose that for the analysis you want to do, you need only the Vibration data and the
Simulink.SimulationInput object that describes the conditions under which each
member was simulated. Set ensemble.SelectedVariables to specify the variables
you want to read. The read command then extracts those variables from the first
ensemble member, as determined by the software.

ensemble.SelectedVariables = ["Vibration";"SimulationInput"];
data1 = read(ensemble)

data1=1×2 table
         Vibration                SimulationInput        
    ___________________    ______________________________

    [20202×1 timetable]    [1×1 Simulink.SimulationInput]

data.Vibration is a cell array containing one timetable row storing the simulation
times and the corresponding vibration signal. You can now process this data as needed.
For instance, extract the vibration data from the table and plot it.

vibdata1 = data1.Vibration{1};
plot(vibdata1.Time,vibdata1.Data)
title('Vibration - First Ensemble Member')
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The LastMemberRead property of the ensemble contains the file name of the most
recently read member. The next time you call read on this ensemble, the software
advances to the next member of the ensemble. (See “Data Ensembles for Condition
Monitoring and Predictive Maintenance” on page 1-2 for more information.) Read the
selected variables from the next member of the ensemble.

data2 = read(ensemble)

data2=1×2 table
         Vibration                SimulationInput        
    ___________________    ______________________________

    [20215×1 timetable]    [1×1 Simulink.SimulationInput]
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To confirm that data1 and data2 contain data from different ensemble members,
examine the values of the varied model parameter, ToothFaultGain. For each ensemble,
this value is stored in the Variables field of the SimulationInput variable.

SimInput1 = data1.SimulationInput{1};
SimInput1.Variables

ans = 
  Variable with properties:

         Name: 'ToothFaultGain'
        Value: -2
    Workspace: 'global-workspace'

SimInput2 = data2.SimulationInput{1};
SimInput2.Variables

ans = 
  Variable with properties:

         Name: 'ToothFaultGain'
        Value: -1.5000
    Workspace: 'global-workspace'

This result confirms that data1 is from the ensemble with ToothFaultGain = –2, and
data2 is from the ensemble with ToothFaultGain = –1.5.

Append Data to Ensemble Member

Suppose that you want to convert the ToothFaultGain values for each ensemble
member into a binary indicator of whether or not a tooth fault is present. Suppose further
that you know from your experience with the system that tooth-fault gain values less than
0.1 in magnitude are small enough to be considered healthy operation. Convert the gain
value for the ensmeble member you just read into an indicator that is 0 (no fault) for –0.1
< gain < 0.1, and 1 (fault) otherwise.

sT = (abs(SimInput2.Variables.Value) < 0.1);

To append the new tooth-fault indicator to the corresponding ensemble data, first expand
the list of data variables in the ensemble.

ensemble.DataVariables = [ensemble.DataVariables; "ToothFault"];
ensemble.DataVariables
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ans = 7×1 string array
    "SimulationInput"
    "SimulationMetadata"
    "Tacho"
    "Vibration"
    "xFinal"
    "xout"
    "ToothFault"

Then, create a table row containing the derived indicator value and the name
ToothFault. Use writeToLastMemberRead to write the value to the last-read member
of the ensemble.

sdata = table(sT,'VariableNames',{'ToothFault'});
writeToLastMemberRead(ensemble,sdata);

Batch-Process Data from All Ensemble Members

In practice, you want to append the tooth-fault indicator to every member in the
ensemble. To do so, reset the ensemble to its unread state, so that the next read begins at
the first ensemble member. Then, loop through all the ensemble members, computing
ToothFault for each member and appending it.

reset(ensemble);
sT = false; 
while hasdata(ensemble)
    data = read(ensemble);
    SimInputVars = data.SimulationInput{1}.Variables;
    TFGain = SimInputVars.Value;
    sT = (abs(TFGain) < 0.1);
    sdata = table(sT,'VariableNames',{'ToothFault'});
    writeToLastMemberRead(ensemble,sdata)
end

Finally, designate the new tooth-fault indicator as a condition variable in the ensemble.
You can use this designation to track and refer to variables in the ensemble data that
represent conditions under which the member data was generated.

ensemble.ConditionVariables = {"ToothFault"};
ensemble.ConditionVariables

ans = 
"ToothFault"
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For an example that shows more ways to manipulate and analyze data stored in a
simulationEnsembleDatastore object, see “Using Simulink to Generate Fault Data”.

See Also
generateSimulationEnsemble | read | simulationEnsembleDatastore |
writeToLastMemberRead

More About
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
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File Ensemble Datastore With Measured Data
In predictive-maintenance algorithm design, you often work with large sets of data
collected from operation of your system under varying conditions. The
fileEnsembleDatastore object helps you manage and interact with such data. For this
example, create a fileEnsembleDatastore object that points to some ensemble data
on disk. Configure it with functions that read data from and write data to the ensemble.

Structure of the Data Files

For this example, you have two data files containing healthy operating data from a
bearing system, baseline_01.mat and baseline_02.mat. You also have three data
files containing faulty data from the same system, FaultData_01.mat,
FaultData_02.mat, and FaultData_03.mat. In practice you might have many more
data files.

Each of these data files contains one data structure, bearing. Load and examine the data
structure from the first healthy data set.

unzip fileEnsData.zip  % extract compressed files
load baseline_01.mat
bearing

bearing = struct with fields:
      sr: 97656
      gs: [585936×1 double]
    load: 270
    rate: 25

The structure contains a vector of accelerometer data gs, the sample rate sr at which
that data was recorded, and some other data variables.

Create and Configure File Ensemble Datastore

To work with this data for predictive maintenance algorithm design, first create a file
ensemble datastore that points to the data files.

location = pwd;
extension = '.mat';
fensemble = fileEnsembleDatastore(location,extension);
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Before you can interact with data in the ensemble, you must create functions that tell the
software how to process the data files to read variables into MATLAB® workspace and to
write data back to the files. For this example, use the following provided functions:

• readBearingData — Parse the bearing structure in a file, and return a table row
containing one table variable for each field in the structure. If the file includes other
data variables besides bearing, the returned table row also includes those variables.

• readLabels — Parse the file name and return a table row containing a fault label in
the variable Label, and the file name in a variable Filename.

• writeBearingData — Take a structure and write its variables to a data file as
individual stored variables.

addpath(fullfile(matlabroot,'examples','predmaint','main')) % Make sure functions are on path

fensemble.DataVariablesFcn = @readBearingData;
fensemble.ConditionVariablesFcn = @readLabels;
fensemble.WriteToMemberFcn = @writeBearingData; 

Finally, set properties of the ensemble to identify the four data variables, the condition
variables, and the selected variables for reading.

fensemble.DataVariables = ["gs";"sr";"load";"rate"];
fensemble.ConditionVariables = ["Label";"Filename"];
fensemble.SelectedVariables = ["gs";"sr";"load";"rate";"Label";"Filename"];

Examine the ensemble. The functions and the variable names are assigned to the
appropriate properties.

fensemble

fensemble = 
  fileEnsembleDatastore with properties:

           DataVariablesFcn: @readBearingData
      ConditionVariablesFcn: @readLabels
    IndependentVariablesFcn: []
           WriteToMemberFcn: @writeBearingData
              DataVariables: [4×1 string]
       IndependentVariables: [0×0 string]
         ConditionVariables: [2×1 string]
          SelectedVariables: [6×1 string]
                 NumMembers: 5
             LastMemberRead: [0×0 string]
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Read Data From Ensemble Member

The functions you assigned tell the read and writeToLastMemberRead commands how
to interact with the data files that make up the ensemble datastore. For example, when
you call read, it reads all the variables named in fensemble.SelectedVariables. The
read command uses @readBearingData to read selected variables that are in
fensemble.DataVariables, and uses @readLabels to read selected variables that are
in fensemble.ConditionVariables. The command reads data from the first ensemble
member (determined by the software) into a table row in the MATLAB workspace.

data = read(fensemble)

data=1×6 table
           gs             sr      load    rate     Label         Filename   
    _________________    _____    ____    ____    ________    ______________

    [146484×1 double]    48828     0       25     "Faulty"    "FaultData_01"

Suppose that you want to analyze the accelerometer data gs by computing its power
spectrum, and then write the power spectrum data back into the ensemble. To do so, first
extract the data from the table and compute the spectrum.

gsdata = data.gs{1};
sr = data.sr;
[pdata,fpdata] = pspectrum(gsdata,sr);
pdata = 10*log10(pdata); % Convert to dB

Write Data to Ensemble Member

You can write the frequency vector fpdata and the power spectrum pdata to the data
file as separate variables. For this example, suppose that you want to add the new
variables in a data structure called Spectrum.

First, add Spectrum to the data variables of the ensemble datastore.

fensemble.DataVariables = [fensemble.DataVariables; "Spectrum"];
fensemble.DataVariables

ans = 5×1 string array
    "gs"
    "sr"
    "load"
    "rate"
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    "Spectrum"

Next, create the data structure and write it to the file representing the last-read ensemble
member. When you call writeToLastMemberRead, it uses
fensemble.WriteToMemberFcn to write the table data to the file.

Spectrum = struct('Freq',fpdata,'Power',pdata);    
writeToLastMemberRead(fensemble,'Spectrum',Spectrum);

You can add the new variable to fensemble.SelectedVariables, or other properties
for identifying variables, as needed.

Calling read again reads the data from the next file in the ensemble datastore and
updates the property fensemble.LastMemberRead.

data = read(fensemble)

data=1×6 table
           gs             sr      load    rate     Label         Filename   
    _________________    _____    ____    ____    ________    ______________

    [146484×1 double]    48828     50      25     "Faulty"    "FaultData_02"

You can see that this data is from a different member by the load variable in the table.
Here, its value is 50, while in the previously read member, it was 0.

Batch-Process Data from All Ensemble Members

You can repeat the processing steps to compute and append the spectrum for this
ensemble member. In practice, it is more useful to automate the process of reading,
processing, and writing data. To do so, reset the ensemble datastore to a state in which
no data has been read. (The reset operation does not change
fensemble.DataVariables, which already contains Spectrum.) Then loop through the
ensemble and perform the read, process, and write steps for each member.

reset(fensemble)
while hasdata(fensemble)
    data = read(fensemble);
    gsdata = data.gs{1};
    sr = data.sr;
    [pdata,fpdata] = pspectrum(gsdata,sr);
    Spectrum = struct('Freq',fpdata,'Power',pdata);
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    writeToLastMemberRead(fensemble,'Spectrum',Spectrum);
end

The hasdata command returns false when every member of the ensemble has been read.
Now, each data file in the ensemble includes the Spectrum variable derived from the
acceleromter data in that file. You can use techniques like this loop to extract and process
data from your ensemble files as you develop a predictive-maintenance algorithm. For an
example illustrating in more detail the use of a file ensemble datastore in the algorithm-
development process, see “Rolling Element Bearing Fault Diagnosis”.

To confirm that the derived variable is present in the file ensemble datastore, read it from
the first and second ensemble members. To do so, reset the ensemble again, and add the
new variable to the selected variables. In practice, after you have computed derived
values, it can be useful to read only those values without rereading the unprocessed data,
which can take significant space in memory. For this example, read selected variables that
include the new variable, Spectrum, but do not include the unprocessed data, gs.

reset(fensemble)
fensemble.SelectedVariables = ["load","Spectrum","Label"];
data1 = read(fensemble)

data1=1×3 table
    load      Spectrum       Label  
    ____    ____________    ________

     0      [1x1 struct]    "Faulty"

data2 = read(fensemble)

data2=1×3 table
    load      Spectrum       Label  
    ____    ____________    ________

     50     [1x1 struct]    "Faulty"

addpath(fullfile(matlabroot,'examples','predmaint','main')) % Reset path

See Also
fileEnsembleDatastore | read | writeToLastMemberRead

 See Also

1-25



More About
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
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Preprocess Data

2



Data Preprocessing for Condition Monitoring and
Predictive Maintenance

Data preprocessing is the second stage of the workflow for predictive maintenance
algorithm development:

Data preprocessing is often necessary to clean the data and convert it into a form from
which you can extract condition indicators. Data preprocessing can include:

• Outlier and missing-value removal, offset removal, and detrending.
• Noise reduction, such as filtering or smoothing.
• Transformations between time and frequency domain.
• More advanced signal processing such as short-time Fourier transforms and

transformations to the order domain.

You can perform data preprocessing on arrays or tables of measured or simulated data
that you manage with Predictive Maintenance Toolbox ensemble datastores, as described
in “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2.
Generally, you preprocess your data before analyzing it to identify a promising condition
indicator, a quantity that changes in a predictable way as system performance degrades.
(See “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-
2.) There can be some overlap between the steps of preprocessing and identifying
condition indicators. Typically, though, preprocessing results in a cleaned or transformed
signal, on which you perform further analysis to condense the signal information into a
condition indicator.
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Understanding your machine and the kind of data you have can help determine what
preprocessing methods to use. For example, if you are filtering noisy vibration data,
knowing what frequency range is most likely to display useful features can help you
choose preprocessing techniques. Similarly, it might be useful to transform gearbox
vibration data to the order domain, which is used for rotating machines when the
rotational speed changes over time. However, that same preprocessing would not be
useful for vibration data from a car chassis, which is a rigid body.

Basic Preprocessing
MATLAB includes many functions that are useful for basic preprocessing of data in arrays
or tables. These include functions for:

• Data cleaning, such as fillmissing and filloutliers. Data cleaning uses various
techniques for finding, removing, and replacing bad or missing data.

• Smoothing data, such as smoothdata and movmean. Use smoothing to eliminate
unwanted noise or high variance in data.

• Detrending data, such as detrend. Removing a trend from the data lets you focus
your analysis on the fluctuations in the data about the trend. While trends can be
meaningful, others are due to systematic effects, and some types of analyses yield
better insight once you remove them. Removing offsets is another, similar type of
preprocessing.

• Scaling or normalizing data, such as rescale. Scaling changes the bounds of the
data, and can be useful, for example, when you are working with data in different
units.

Another common type of preprocessing is to extract a useful portion of the signal and
discard other portions. For instance, you might discard the first five seconds of a signal
that is part of some start-up transient, and retain only the data from steady-state
operation. For an example that performs this kind of preprocessing, see “Using Simulink
to Generate Fault Data”.

For more information on basic preprocessing commands in MATLAB, see “Preprocessing
Data” (MATLAB).

Filtering
Filtering is another way to remove noise or unwanted components from a signal. Filtering
is particularly helpful when you know what frequency range in the data is most likely to
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display useful features for condition monitoring or prediction. The basic MATLAB function
filter lets you filter a signal with a transfer function. You can use designfilt to
generate filters for use with filter, such as passband, high-pass and low-pass filters,
and other common filter forms. For more information about using these functions, see
“Digital and Analog Filters” (Signal Processing Toolbox).

If you have a Wavelet Toolbox™ license, you can use wavelet tools for more complex filter
approaches. For instance, you can divide your data into subbands, process the data in
each subband separately, and recombine them to construct a modified version of the
original signal. For more information about such filters, see “Filter Banks” (Wavelet
Toolbox). You can also use the Signal Processing Toolbox™ function emd to decompose
separate a mixed signal into components with different time-frequency behavior.

Time-Domain Preprocessing
Signal Processing Toolbox provides functions that let you study and characterize
vibrations in mechanical systems in the time domain. These functions can be for both
preprocessing and extraction of condition indicators. For example:

• tsa — Remove noise coherently with time-synchronous averaging and analyze wear
using envelope spectra. The example “Using Simulink to Generate Fault Data” uses
time-synchronous averaging to preprocess vibration data.

• ordertrack — Use order analysis to analyze and visualize spectral content occurring
in rotating machinery. Track and extract orders and their time-domain waveforms.

• rpmtrack — Track and extract the RPM profile from a vibration signal by computing
the RPM as a function of time.

• envspectrum — Compute an envelope spectrum. The envelope spectrum removes the
high-frequency sinusoidal components from the signal and focuses on the lower-
frequency modulations. The example “Rolling Element Bearing Fault Diagnosis” uses
an envelope spectrum for such preprocessing.

For more information on these and related functions, see “Vibration Analysis” (Signal
Processing Toolbox).

Frequency-Domain (Spectral) Preprocessing
For vibrating or rotating systems, fault development can be indicated by changes in
frequency-domain behavior such as the changing of resonant frequencies or the presence
of new vibrational components. Signal Processing Toolbox provides many functions for
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analyzing such spectral behavior. Often these are useful as preprocessing before
performing further analysis for extracting condition indicators. Such functions include:

• pspectrum — Compute the power spectrum, time-frequency power spectrum, or
power spectrogram of a signal. The spectrogram contains information about how the
power distribution changes with time. The example “Multi-Class Fault Detection Using
Simulated Data” performs data preprocessing using pspectrum.

• envspectrum — Compute an envelope spectrum. A fault that causes a repeating
impulse or pattern will impose amplitude modulation on the vibration signal of the
machinery. The envelope spectrum removes the high-frequency sinusoidal components
from the signal and focuses on the lower-frequency modulations. The example “Rolling
Element Bearing Fault Diagnosis” uses an envelope spectrum for such preprocessing.

• orderspectrum — Compute an average order-magnitude spectrum.
• modalfrf — Estimate the frequency-response function of a signal.

For more information on these and related functions, see “Vibration Analysis” (Signal
Processing Toolbox).

Time-Frequency Preprocessing
Signal Processing Toolbox includes functions for analyzing systems whose frequency-
domain behavior changes with time. Such analysis is called time-frequency analysis, and
is useful for analyzing and detecting transient or changing signals associated with
changes in system performance. These functions include:

• spectrogram — Compute a spectrogram using a short-time Fourier transform. The
spectrogram describes the time-localized frequency content of a signal and its
evolution over time. The example “Condition Monitoring and Prognostics Using
Vibration Signals” uses spectrogram to preprocess signals and help identify potential
condition indicators.

• hht — Compute the Hilbert spectrum of a signal. The Hilbert spectrum is useful for
analyzing signals that comprise a mixture of signals whose spectral content changes in
time. This function computes the spectrum of each component in the mixed signal,
where the components are determined by empirical mode decomposition.

• emd — Compute the empirical mode decomposition of a signal. This decomposition
describes the mixture of signals analyzed in a Hilbert spectrum, and can help you
separate a mixed signal to extract a component whose time-frequency behavior
changes as system performance degrades. You can use emd to generate the inputs for
hht.
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• kurtogram — Compute the time-localized spectral kurtosis, which characterizes a
signal by differentiating stationary Gaussian signal behavior from nonstationary or
non-Gaussian behavior in the frequency domain. As preprocessing for other tools such
as envelope analysis, spectral kurtosis can supply key inputs such as optimal band.
(See pkurtosis.) The example “Rolling Element Bearing Fault Diagnosis” uses
spectral kurtosis for preprocessing and extraction of condition indicators.

For more information on these and related functions, see “Time-Frequency Analysis”
(Signal Processing Toolbox).

See Also

More About
• “Designing Algorithms for Condition Monitoring and Predictive Maintenance”
• “Data Ensembles for Condition Monitoring and Predictive Maintenance” on page 1-2
• “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2
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Condition Indicators for Monitoring, Fault Detection,
and Prediction

A condition indicator is a feature of system data whose behavior changes in a predictable
way as the system degrades or operates in different operational modes. A condition
indicator can be any feature that is useful for distinguishing normal from faulty operation
or for predicting remaining useful life. A useful condition indicator clusters similar system
status together, and sets different status apart. Examples of condition indicators include
quantities derived from:

• Simple analysis, such as the mean value of the data over time
• More complex signal analysis, such as the frequency of the peak magnitude in a signal

spectrum, or a statistical moment describing changes in the spectrum over time
• Model-based analysis of the data, such as the maximum eigenvalue of a state space

model which has been estimated using the data
• Combination of both model-based and signal-based approaches, such as using the

signal to estimate a dynamic model, simulating the dynamic model to compute a
residual signal, and performing statistical analysis on the residual

• Combination of multiple features into a single effective condition indicator

The identification of condition indicators is typically the third step of the workflow for
designing a predictive maintenance algorithm, after accessing and preprocessing data.
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You use condition indicators extracted from system data taken under known conditions to
train a model that can then diagnose or predict the condition of a system based on new
data taken under unknown conditions. In practice, you might need to explore your data
and experiment with different condition indicators to find the ones that best suit your
machine, your data, and your fault conditions. The examples “Fault Diagnosis of
Centrifugal Pumps using Residual Analysis” and “Using Simulink to Generate Fault Data”
illustrate analyses that test multiple condition indicators and empirically determine the
best ones to use.

In some cases, a combination of condition indicators can provide better separation
between fault conditions than a single indicator on its own. The example “Rolling Element
Bearing Fault Diagnosis” is one in which such a combined indicator is useful. Similarly,
you can often train decision models for fault detection and diagnosis using a table
containing multiple condition indicators computed for many ensemble members. For an
example that uses this approach, see “Multi-Class Fault Detection Using Simulated Data”.

Predictive Maintenance Toolbox and other toolboxes include many functions that can be
useful for extracting condition indicators. For more information about different types of
condition indicators and their uses, see:

• “Signal-Based Condition Indicators” on page 3-4
• “Model-Based Condition Indicators” on page 3-8

You can extract condition indicators from vectors or timetables of measured or simulated
data that you manage with Predictive Maintenance Toolbox ensemble datastores, as
described in “Data Ensembles for Condition Monitoring and Predictive Maintenance” on
page 1-2. It is often useful to preprocess such data first, as described in “Data
Preprocessing for Condition Monitoring and Predictive Maintenance” on page 2-2.

See Also

More About
• “Signal-Based Condition Indicators” on page 3-4
• “Model-Based Condition Indicators” on page 3-8
• “Designing Algorithms for Condition Monitoring and Predictive Maintenance”
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Signal-Based Condition Indicators
A signal-based condition indicator is a quantity derived from processing signal data. The
condition indicator captures some feature of the signal that changes in a reliable way as
system performance degrades. In designing algorithms for predictive maintenance, you
use such a condition indicator to distinguish healthy from faulty machine operation. Or,
you can use trends in the condition indicator to identify degrading system performance
indicative of wear or other developing fault condition.

Signal-based condition indicators can be extracted using any type of signal processing,
including time-domain, frequency-domain, and time-frequency analysis. Examples of
signal-based condition indicators include:

• The mean value of a signal that changes as system performance changes
• A quantity that measures chaotic behavior in a signal, the presence of which might be

indicative of a fault condition
• The peak magnitude in a signal spectrum, or the frequency at which the peak

magnitude occurs, if changes in such frequency-domain behavior are indicative of
changing machine conditions

In practice, you might need to explore your data and experiment with different condition
indicators to find the ones that best suit your machine, your data, and your fault
conditions. There are many functions that you can use for signal analysis to generate
signal-based condition indicators. The following sections summarize some of them. You
can use these functions on signals in arrays or timetables, such as signals extracted from
an ensemble datastore. (See “Data Ensembles for Condition Monitoring and Predictive
Maintenance” on page 1-2.)

Time-Domain Condition Indicators
Simple Time-Domain Features

For some systems, simple statistical features of time signals can serve as condition
indicators, distinguishing fault conditions from healthy conditions. For example, the
average value of a particular signal (mean) or its standard deviation (std) might change
as system health degrades. Or, you can try higher-order moments of the signal such as
skewness and kurtosis. With such features, you can try to identify threshold values
that distinguish healthy operation from faulty operation, or look for abrupt changes in the
value that mark changes in system state.

3 Identify Condition Indicators

3-4



Other functions you can use to extract simple time-domain features include:

• peak2peak — Difference between maximum and minimum values in a signal.
• envelope — Signal envelope.
• dtw — Distance between two signals, computed by dynamic time warping.
• rainflow — Cycle counting for fatigue analysis.

Nonlinear Features in Time-Series Data

In systems that exhibit chaotic signals, certain nonlinear properties can indicate sudden
changes in system behavior. Such nonlinear features can be useful in analyzing vibration
and acoustic signals from systems such as bearings, gears, and engines. They can reflect
changes in phase space trajectory of the underlying system dynamics that occur even
before the occurrence of a fault condition. Thus, monitoring a system's dynamic
characteristics using nonlinear features can help identify potential faults earlier, such as
when a bearing is slightly worn.

Predictive Maintenance Toolbox includes several functions for computing nonlinear signal
features. These quantities represent different ways of characterizing the level of chaos in
a system. Increase in chaotic behavior can indicate a developing fault condition.

• lyapunovExponent — Compute the largest Lyapunov exponent, which characterizes
the rate of separation of nearby phase-space trajectories.

• approximateEntropy — Estimate the approximate entropy of a time-domain signal.
The approximate entropy quantifies the amount of regularity or irregularity in a signal.

• correlationDimension — Estimate the correlation dimension of a signal, which is a
measure of the dimensionality of the phase space occupied by the signal. Changes in
correlation dimension indicate changes in the phase-space behavior of the underlying
system.

The computation of these nonlinear features relies on the phaseSpaceReconstruction
function, which reconstructs the phase space containing all dynamic system variables.

The example “Using Simulink to Generate Fault Data” uses both simple time-domain
features and these nonlinear features as candidates for diagnosing different fault
conditions. The example computes all features for every member of a simulated data
ensemble, and uses the resulting feature table to train a classifier.
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Frequency-Domain Condition Indicators
For some systems, spectral analysis can generate signal features that are useful for
distinguishing healthy and faulty states. Some functions you can use to compute
frequency-domain condition indicators include:

• meanfreq — Mean frequency of the power spectrum of a signal.
• powerbw — 3-dB power bandwidth of a signal.
• findpeaks — Values and locations of local maxima in a signal. If you preprocess the

signal by transforming it into the frequency domain, findpeaks can give you the
frequencies of spectral peaks.

The example “Condition Monitoring and Prognostics Using Vibration Signals” uses such
frequency-domain analysis to extract condition indicators.

For a list of functions you can use for frequency-domain feature extraction, see “Identify
Condition Indicators”.

Time-Frequency Condition Indicators
Time-Frequency Spectral Properties

The time-frequency spectral properties are another way to characterize changes in the
spectral content of a signal over time. Available functions for computing condition
indicators based on time-frequency spectral analysis include:

• pkurtosis — Compute spectral kurtosis, which characterizes a signal by
differentiating stationary Gaussian signal behavior from nonstationary or non-
Gaussian behavior in the frequency domain. Spectral kurtosis takes small values at
frequencies where stationary Gaussian noise only is present, and large positive values
at frequencies where transients occur. Spectral kurtosis can be a condition indicator
on its own. You can use kurtogram to visualize the spectral kurtosis, before
extracting features with pkurtosis. As preprocessing for other tools such as
envelope analysis, spectral kurtosis can supply key inputs such as optimal bandwidth.

• pentropy — Compute spectral entropy, which characterizes a signal by providing a
measure of its information content. Where you expect smooth machine operation to
result in a uniform signal such as white noise, higher information content can indicate
mechanical wear or faults.
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The example “Rolling Element Bearing Fault Diagnosis” uses spectral features of fault
data to compute a condition indicator that distinguishes two different fault states in a
bearing system.

Time-Frequency Moments

Time-frequency moments provide an efficient way to characterize nonstationary signals,
signals whose frequencies change in time. Classical Fourier analysis cannot capture the
time-varying frequency behavior. Time-frequency distributions generated by short-time
Fourier transform or other time-frequency analysis techniques can capture the time-
varying behavior. Time-frequency moments provide a way to characterize such time-
frequency distributions more compactly. There are three types of time-frequency
moments:

• tfsmoment — Conditional spectral moment, which is the variation of the spectral
moment over time. Thus, for example, for the second conditional spectral moment,
tfsmoment returns the instantaneous variance of the frequency at each point in time.

• tftmoment — Conditional temporal moment, which is the variation of the temporal
moment with frequency. Thus, for example, for the second conditional temporal
moment, tftmoment returns the variance of the signal at each frequency.

• tfmoment — Joint time-frequency moment. This scalar quantity captures the moment
over both time and frequency.

You can also compute the instantaneous frequency as a function of time using instfreq.

See Also

More About
• “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2
• “Model-Based Condition Indicators” on page 3-8
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Model-Based Condition Indicators
A model-based condition indicator is a quantity derived from fitting system data to a
model and performing further processing using the model. The condition indicator
captures aspects of the model that change as system performance degrades. Model
based-condition indicators can be useful when:

• It is difficult to identify suitable condition indicators using features from signal
analysis alone. This situation can occur when other factors affect the signal apart from
the fault condition of the machine. For instance, the signals you measure might vary
depending upon one or more input signals elsewhere in the system.

• You have knowledge of the system or underlying processes such that you can model
some aspect of the system's behavior. For instance, you might know from system
knowledge that there is a system parameter, such as a time constant, that will change
as the system degrades.

• You want to do some forecasting or simulation of future system behavior based upon
current system conditions. (See “Models for Predicting Remaining Useful Life” on
page 4-8.)

In such cases, it can be useful and efficient to fit the data to some model and use
condition indicators extracted from the model rather than from direct analysis of the
signal. Model-based condition indicators can be based on any type of model that is
suitable for your data and system, including both static and dynamic models. Condition
indicators you extract from models can be quantities such as:

• Model parameters, such as the coefficients of a linear fit. A change in such a
parameter value can be indicative of a fault condition.

• Statistical properties of model parameters, such as the variance. A model parameter
that falls outside the statistical range expected from healthy system performance can
be indicative of a fault.

• Dynamic properties, such as system state values obtained by state estimation, or the
pole locations or damping coefficient of an estimated dynamic model.

• Quantities derived from simulation of a dynamic model.

In practice, you might need to explore different models and experiment with different
condition indicators to find the ones that best suit your machine, your data, and your fault
conditions. There are many approaches that you can take to identifying model-based
condition indicators. The following sections summarize common approaches.
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Static Models
When you have data obtained from steady-state system operation, you can try fitting the
data to a static model, and using parameters of that model to extract condition indicators.
For example, suppose that you generate an ensemble of data by measuring some
characteristic curve in different machines, at different times, or under different
conditions. You can then fit a polynomial model to the characteristic curves, and use the
resulting polynomial coefficients as condition indicators.

The example “Fault Diagnosis of Centrifugal Pumps using Steady State Experiments”
takes this approach. The data in that example describes the characteristic relation
between pump head and flow rate, measured in an ensemble of pumps during healthy
steady-state operation. The example performs a simple linear fit to describe this
characteristic curve. Because there is some variation in the best-fit parameters across the
ensemble, the example uses the resulting parameters to determine a distribution and
confidence region for the fit parameters. Performing the same fit with a test data set
yields parameters, and comparison of these parameters with the distribution yields the
likelihood of a fault.

You can also use static models to generate grouped distributions of healthy and faulty
data. When you obtain a new point from test data, you can use hypothesis tests to
determine which distribution the point most likely belongs to.

Dynamic Models
For dynamic systems, changes in measured signals (outputs) depend on changes in
signals elsewhere in the system (inputs). You can use a dynamic model of such a system to
generate condition indicators. Some dynamic models are based on both input and output
data, while others can be fit based on time-series output data alone. You do not
necessarily need a known model of the underlying dynamic processes to perform such
model fitting. However, system knowledge can help you choose the type or structure of
model to fit.

Some functions you can use for model fitting include:

• ssest — Estimate a state-space model from time-domain input-output data or
frequency-response data.

• ar — Estimate a least-squares autorecursive (AR) model from time-series data.
• nlarx — Model nonlinear behavior using dynamic nonlinearity estimators such as

wavelet networks, tree-partitioning, and sigmoid networks.
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There are also recursive estimation functions that let you fit models in real time as you
collect the data, such as recursiveARX. The example “Detect Abrupt System Changes
Using Identification Techniques” illustrates this approach.

For more functions you can use for model fitting, see “Identify Condition Indicators”.

Condition Indicators Based on Model Parameters or Dynamics

Any parameter of a model might serve as a useful condition indicator. As with static
models, changes in model parameters or values outside of statistical confidence bounds
can be indicative of fault conditions. For example, if you identify a state-space model
using ssest, the pole locations or damping coefficients might change as a fault condition
develops. You can use linear analysis functions such as damp, pole, and zero to extract
dynamics from the estimated model.

Another approach is modalfit, which identifies dynamic characteristics by separating a
signal into multiple modes with distinct frequency-response functions.

Sometimes, you understand some of your system dynamics and can represent them using
differential equations or model structures with unknown parameters. For instance, you
might be able to derive a model of your system in terms of physical parameters such as
time constants, resonant frequencies, or damping coefficients, but the precise values of
such parameters are unknown. In this case, you can use linear or nonlinear grey-box
models to estimate parameter values, and track how those parameter values change with
different fault conditions. Some functions for you can use for grey-box estimation include
pem and nlarx.

A Simulink model can also serve as a grey-box model for parameter estimation. You can
use Simulink to model your system under both healthy and faulty conditions using
physically meaningful parameters, and estimate the values of those parameters based on
system data (for instance, using the tools in Simulink Design Optimization™).

Condition Indicators Based on Residuals

Another way to use a dynamic model is to simulate the model and compare the result to
the real data on which the model was based. The difference between system data and the
results of simulating an estimated model is called the residual signal The example “Fault
Diagnosis of Centrifugal Pumps using Residual Analysis” analyzes the residual signal of
an estimated nlarx model. The example computes several statistical and spectral
features of the residual signal. It tests these candidate condition indicators to determine
which provide the clearest distinction between healthy operation and several different
faulty states.
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Another residual-based approach is to identify multiple models for ensemble data
representing different healthy and fault conditions. For test data, you then compute the
residuals for each of these models. The model that yields the smallest residual signal (and
therefore the best fit) indicates which healthy or fault condition most likely applies to the
test data.

For residual analysis of an identified model obtained using commands such as nlarx, ar,
or ssest, use:

• sim — Simulate the model response to an input signal.
• resid — Compute the residuals for the model.

As in the case parameter-based condition indicators, you can also use Simulink to
construct models for residual analysis. The example “Fault Detection Using Data Based
Models” also illustrates the residual-analysis approach, using a model identified from
simulated data.

State Estimators
The values of system states can also serve as condition indicators. System states
correspond to physical parameters, and abrupt or unexpected changes in state values can
therefore indicate fault conditions. State estimators such as unscentedKalmanFilter,
extendedKalmanFilter, and particleFilter let you track the values of system
states in real time, to monitor for such changes. The following examples illustrate the use
of state estimators for fault detection:

• “Fault Detection Using an Extended Kalman Filter”
• “Nonlinear State Estimation of a Degrading Battery System”

See Also

More About
• “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2
• “Signal-Based Condition Indicators” on page 3-4
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3-11





Detect and Predict Faults

• “Decision Models for Fault Detection and Diagnosis” on page 4-2
• “Models for Predicting Remaining Useful Life” on page 4-8
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Decision Models for Fault Detection and Diagnosis
Condition monitoring includes discriminating between faulty and healthy states (fault
detection) or, when a fault state is present, determining the source of the fault (fault
diagnosis). To design an algorithm for condition monitoring, you use condition indicators
extracted from system data to train a decision model that can analyze indicators
extracted from test data to determine the current system state. Thus, this step in the
algorithm-design process is the next step after identifying condition indicators.

(For information about using condition indicators for fault prediction, see “Models for
Predicting Remaining Useful Life” on page 4-8.)

Some examples of decision models for condition monitoring include:

• A threshold value or set of bounds on a condition-indicator value that indicates a fault
when the indicator exceeds it

• A probability distribution that describes the likelihood that any particular value of the
condition indicator is indicative of any particular type of fault

• A classifier that compares the current value of the condition indicator to values
associated with fault states, and returns the likelihood that one or another fault state
is present

In general, when you are testing different models for fault detection or diagnosis, you
construct a table of values of one or more condition indicators. The condition indicators
are features that you extract from data in an ensemble representing different healthy and
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faulty operating conditions. (See “Condition Indicators for Monitoring, Fault Detection,
and Prediction” on page 3-2.) It is useful to partition your data into a subset that you use
for training the decision model (the training data) and a disjoint subset that you use for
validation (the validation data). Compared to training and validation with overlapping
data sets, using completely separate training and validation data generally gives you a
better sense of how the decision model will perform with new data.

When designing your algorithm, you might test different fault detection and diagnosis
models using different condition indicators. Thus, this step in the design process is likely
iterative with the step of extraction condition indicators, as you try different indicators,
different combinations of indicators, and different decision models.

Statistics and Machine Learning Toolbox™ and other toolboxes include functionality that
you can use to train decision models such as classifiers and regression models. Some
common approaches are summarized here.

Feature Selection
Feature selection techniques help you reduce large data sets by eliminating features that
are irrelevant to the analysis you are trying to perform. In the context of condition
monitoring, irrelevant features are those that do not separate healthy from faulty
operation or help distinguish between different fault states. In other words, feature
selection means identifying those features that are suitable to serve as condition
indicators because they change in a detectable, reliable way as system performance
degrades. Some functions for feature selection include:

• pca — Perform principal component analysis, which finds the linear combination of
independent data variables that account for the greatest variation in observed values.
For instance, suppose that you have ten independent sensor signals for each member
of your ensemble from which you extract many features. In that case, principal
component analysis can help you determine which features or combination of features
are most effective for separating the different healthy and faulty conditions
represented in your ensemble. The example “Wind Turbine High-Speed Bearing
Prognosis” uses this approach to feature selection.

• sequentialfs — For a set of candidate features, identify the features that best
distinguish between healthy and faulty conditions, by sequentially selecting features
until there is no improvement in discrimination.

• fscnca — Perform feature selection for classification using neighborhood component
analysis. The example “Using Simulink to Generate Fault Data” uses this function to
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weight a list of extracted condition indicators according to their importance in
distinguishing among fault conditions.

For more functions relating to feature selection, see “Dimensionality Reduction and
Feature Extraction” (Statistics and Machine Learning Toolbox).

Statistical Distribution Fitting
When you have a table of condition indicator values and corresponding fault states, you
can fit the values to a statistical distribution. Comparing validation or test data to the
resulting distribution yields the likelihood that the validation or test data corresponds to
one or the other fault states. Some functions you can use for such fitting include:

• ksdensity — Estimate a probability density for sample data.
• histfit — Generate a histogram from data, and fit it to a normal distribution. The

example “Fault Diagnosis of Centrifugal Pumps using Steady State Experiments” uses
this approach.

• ztest — Test likelihood that data comes from a normal distribution with specified
mean and standard deviation.

For more information about statistical distributions, see “Probability Distributions”
(Statistics and Machine Learning Toolbox).

Machine Learning
There are several ways to apply machine-learning techniques to the problem of fault
detection and diagnosis. Classification is a type of supervised machine learning in which
an algorithm “learns” to classify new observations from examples of labeled data. In the
context of fault detection and diagnosis, you can pass condition indicators derived from
an ensemble and their corresponding fault labels to an algorithm-fitting function that
trains the classifier.

For instance, suppose that you compute a table of condition-indicator values for each
member in an ensemble of data that spans different healthy and faulty conditions. You can
pass this data to a function that fits a classifier model. This training data trains the
classifier model to take a set of condition-indicator values extracted from a new data set,
and guess which healthy or faulty condition applies to the data. In practice, you use a
portion of your ensemble for training, and reserve a disjoint portion of the ensemble for
validating the trained classifier.
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Statistics and Machine Learning Toolbox includes many functions that you can use to
train classifiers. These functions include:

• fitcsvm — Train a binary classification model to distinguish between two states, such
as the presence or absence of a fault condition. The examples “Using Simulink to
Generate Fault Data” use this function to train a classifier with a table of feature-
based condition indicators. The example “Fault Diagnosis of Centrifugal Pumps using
Steady State Experiments” also uses this function, with model-based condition
indicators computed from statistical properties of the parameters obtained by fitting
data to a static model.

• fitcecoc — Train a classifier to distinguish among multiple states. This function
reduces a multiclass classification problem to a set of binary classifiers. The example
“Multi-Class Fault Detection Using Simulated Data” uses this function.

• fitctree — Train a multiclass classification model by reducing the problem to a set
of binary decision trees.

• fitclinear — Train a classifier using high-dimensional training data. This function
can be useful when you have a large number of condition indicators that you are not
able to reduce using functions such as fscnca.

Other machine-learning techniques include k-means clustering (kmeans), which partitions
data into mutually exclusive clusters. In this technique, a new measurement is assigned to
a cluster by minimizing the distance from the data point to the mean location of its
assigned cluster. Tree bagging is another technique that aggregates an ensemble of
decision trees for classification. The example “Fault Diagnosis of Centrifugal Pumps using
Steady State Experiments” uses a TreeBagger classifier.

For more general information about machine-learning techniques for classification, see
“Classification” (Statistics and Machine Learning Toolbox).

Regression with Dynamic Models
Another approach to fault detection and diagnosis is to use model identification. In this
approach, you estimate dynamic models of system operation in healthy and faulty states.
Then, you analyze which model is more likely to explain the live measurements from the
system. This approach is useful when you have some information about your system that
can help you select a model type for identification. To use this approach, you:

1 Collect or simulate data from the system operating in a healthy condition and in
known faulty, degraded, or end-of-life conditions.
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2 Identify a dynamic model representing the behavior in each healthy and fault
condition.

3 Use clustering techniques to draw a clear distinction between the conditions.
4 Collect new data from a machine in operation and identify a model of its behavior.

You can then determine which of the other models, healthy or faulty, is most likely to
explain the observed behavior.

The example “Fault Detection Using Data Based Models” uses this approach. Functions
you can use for identifying dynamic models include:

• ssest
• arx, armax, ar
• nlarx

You can use functions like forecast to predict the future behavior of the identified
model.

Control Charts
Statistical process control (SPC) methods are techniques for monitoring and assessing the
quality of manufactured goods. SPC is used in programs that define, measure, analyze,
improve, and control development and production processes. In the context of predictive
maintenance, control charts and control rules can help you determine when a condition-
indicator value indicates a fault. For instance, suppose you have a condition indicator that
indicates a fault if it exceeds a threshold, but also exhibits some normal variation that
makes it difficult to identify when the threshold is crossed. You can use control rules to
define the threshold condition as occurring when a specified number of sequential
measurements exceeds the threshold, rather than just one.

• controlchart — Visualize a control chart.
• controlrules — Define control rules and determine whether they are violated.
• cusum — Detect small changes in the mean value of data.

For more information about statistical process control, see “Statistical Process Control”
(Statistics and Machine Learning Toolbox).
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Changepoint Detection
Another way to detect fault conditions is to track the value of a condition indicator over
time and detect abrupt changes in the trend behavior. Such abrupt changes can be
indicative of a fault. Some functions you can use for such changepoint detection include:

• findchangepts — Find abrupt changes in a signal.
• findpeaks — Find peaks in a signal.
• pdist, pdist2, mahal — Find the distance between measurements or sets of

measurements, according to different definitions of distance.
• segment — Segment data and estimate AR, ARX, ARMA, or ARMAX models for each

segment. The example “Fault Detection Using Data Based Models” uses this approach.

See Also

More About
• “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2
• “Models for Predicting Remaining Useful Life” on page 4-8
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Models for Predicting Remaining Useful Life
The remaining useful life (RUL) of a machine is the expected life or usage time remaining
before the machine requires repair or replacement. Predicting remaining useful life from
system data is a central goal of predictive-maintenance algorithms.

The term life time or usage time here refers to the life of the machine defined in terms of
whatever quantity you use to measure system life. Units of life time can be quantities
such as the distance travelled (miles), fuel consumed (gallons), repetition cycles
performed, or time since the start of operation (days). Similarly time evolution can mean
the evolution of a value with any such quantity.

Typically, you estimate the RUL of a system by developing a model that can perform the
estimation based upon the time evolution or statistical properties of condition indicator
values, such as:

• A model that fits the time evolution of a condition indicator and predicts how long it
will be before the condition indicator crosses some threshold value indicative of a fault
condition.

• A model that compares the time evolution of a condition indicator to measured or
simulated time series from systems that ran to failure. Such a model can compute the
most likely time-to-failure of the current system.

Predictions from such models are statistical estimates with associated uncertainty. They
provide a probability distribution of the RUL of the test machine. The model you use can
be a dynamic model such as those you obtain using System Identification Toolbox™
commands. Predictive Maintenance Toolbox also includes some specialized models
designed for computing RUL from different types of measured system data.

Developing a model for RUL prediction is the next step in the algorithm-design process
after identifying promising condition indicators (see “Condition Indicators for Monitoring,
Fault Detection, and Prediction” on page 3-2). Because the model you develop uses the
time evolution of condition indicator values to predict RUL, this step is often iterative
with the step of identifying condition indicators.
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RUL Estimation Using Identified Models or State Estimators
When you have an identified dynamic model that describes some aspect of system
behavior, you can use that model to forecast future behavior. You can identify such a
dynamic model from system data. Or, if you have system data that represents the
operation of your machines with time or usage, you can extract condition indicators from
that data and track the behavior of the condition indicators with time or usage. You can
then identify a model that describes the behavior of the condition indicator, and use that
model to predict future values of a condition indicator. If you know, for example, that your
system needs repair when some condition indicator exceeds some threshold, you can
identify a model of the time evolution of that condition indicator. You can then propagate
the model forward in time to determine how long it will be before the condition indicator
reaches the threshold value.

Some functions you can use for identification of dynamic models include:

• ssest — Estimate a state-space model from time-domain input-output data or
frequency-response data.

• arx, armax, ar — Estimate an autoregressive or moving-average (AR or ARMA) model
from time-series data.

• nlarx — Model nonlinear behavior using dynamic nonlinearity estimators such as
wavelet networks, tree-partitioning, and sigmoid networks.
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You can use functions like forecast to predict the future behavior of the identified
model. The example “Condition Monitoring and Prognostics Using Vibration Signals” uses
this approach to RUL prediction.

There are also recursive estimators that let you fit models in real-time as you collect and
process the data, such as recursiveARX and recursiveAR.

RUL estimation with state estimators such as unscentedKalmanFilter,
extendedKalmanFilter, and particleFilter works in a similar way. You perform
state estimation on some time-varying data, and predict future state values to determine
the time until some state value associated with failure occurs.

RUL Estimation Using RUL Estimator Models
Predictive Maintenance Toolbox includes some specialized models designed for
computing RUL from different types of measured system data. These models are useful
when you have historical data and information such as:

• Run-to-failure histories of machines similar to the one you want to diagnose
• A known threshold value of some condition indicator that indicates failure
• Data about how much time or how much usage it took for similar machines to reach

failure (life time)

RUL estimation models provide methods for training the model using historical data and
using it for performing prediction of the remaining useful life. The term life time here
refers to the life of the machine defined in terms of whatever quantity you use to measure
system life. Similarly time evolution can mean the evolution of a value with usage,
distance traveled, number of cycles, or other quantity that describes life time.

The general workflow for using RUL estimation models is:

1 Choose the best type of RUL estimation model for the data and system knowledge
you have. Create and configure the corresponding model object.

2 Train the estimation model using the historical data you have. To do so, use the fit
command.

3 Using test data of the same type as your historical data, estimate the RUL of the test
component. To do so, use the predictRUL command. You can also use the test data
recursively to update some model types, such as degradation models, to help keep
the predictions accurate. To do so, use the update commands.
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Choose an RUL Estimator
There are three families of RUL estimation models. Choose which family and which model
to use based on the data and system information you have available, as shown in the
following illustration.

Similarity Models
Similarity models base the RUL prediction of a test machine on known behavior of similar
machines from a historical database. Such models compare a trend in test data or
condition-indicator values to the same information extracted from other, similar systems.

Similarity models are useful when:

• You have run-to-failure data from similar systems (components). Run-to-failure data is
data that starts during healthy operation and ends when the machine is in a state
close to failure or maintenance.

• The run-to-failure data shows similar degradation behaviors. That is, the data changes
in some characteristic way as the system degrades.

Thus you can use similarity models when you can obtain degradation profiles from your
data ensemble. The degradation profiles represent the evolution of one or more condition
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indicators for each machine in the ensemble (each component), as the machine
transitions from a healthy state to a faulty state.

Predictive Maintenance Toolbox includes three types of similarity models. All three types
estimate RUL by determining the similarity between the degradation history of a test data
set and the degradation history of data sets in the ensemble. For similarity models,
predictRUL estimates the RUL of the test component as the median life span of most
similar components minus the current life time value of the test component. The three
models differ in the ways they define and quantify the notion of similarity.

• Hashed-feature similarity model (hashSimilarityModel) — This model transforms
historical degradation data from each member of your ensemble into fixed-size,
condensed, information such as the mean, total power, maximum or minimum values,
or other quantities.

When you call fit on a hashSimilarityModel object, the software computes these
hashed features and stores them in the similarity model. When you call predictRUL
with data from a test component, the software computes the hashed features and
compares the result to the values in the table of historical hashed features.

The hashed-feature similarity model is useful when you have large amounts of
degradation data, because it reduces the amount of data storage necessary for
prediction. However, its accuracy depends on the accuracy of the hash function that
the model uses. If you have identified good condition indicators in your data, you can
use the Method property of the hashSimilarityModel object to specify the hash
function to use those features.

• Pairwise similarity model (pairwiseSimilarityModel) — Pairwise similarity
estimation determines RUL by finding the components whose historical degradation
paths are most correlated to that of the test component. In other words, it computes
the distance between different time series, where distance is defined as correlation,
dynamic time warping (dtw), or a custom metric that you provide. By taking into
account the degradation profile as it changes over time, pairwise similarity estimation
can give better results than the hash similarity model.

• Residual similarity model (residualSimilarityModel) — Residual-based
estimation fits prior data to model such as an ARMA model or a model that is linear or
exponential in usage time. It then computes the residuals between data predicted from
the ensemble models and the data from the test component. You can view the residual
similarity model as a variation on the pairwise similarity model, where the magnitudes
of the residuals is the distance metric. The residual similarity approach is useful when
your knowledge of the system includes a form for the degradation model.
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For an example that uses a similarity model for RUL estimation, see “Similarity-Based
Remaining Useful Life Estimation”.

Degradation Models
Degradation models extrapolate past behavior to predict the future condition. This type of
RUL calculation fits a linear or exponential model to degradation profile of a condition
indicator, given the degradation profiles in your ensemble. It then uses the degradation
profile of the test component to statistically compute the remaining time until the
indicator reaches some prescribed threshold. These models are most useful when there is
a known value of your condition indicator that indicates failure. The two available
degradation model types are:

• Linear degradation model (linearDegradationModel) — Describes the degradation
behavior as a linear stochastic process with an offset term. Linear degradation models
are useful when your system does not experience cumulative degradation.

• Exponential degradation model (exponentialDegradationModel — Describes the
degradation behavior as an exponential stochastic process with an offset term.
Exponential degradation models are useful when the test component experiences
cumulative degradation.

After you create a degradation model object, initialize the model using historical data
regarding the health of an ensemble of similar components, such as multiple machines
manufactured to the same specifications. To do so, use fit. You can then predict the
remaining useful life of similar components using predictRUL.

Degradation models only work with a single condition indicator. However, you can use
principal-component analysis or other fusion techniques to generate a fused condition
indicator that incorporates information from more than one condition indicator. Whether
you use a single indicator or a fused indicator, look for an indicator that shows a clear
increasing or decreasing trend, so that the modeling and extrapolation are reliable.

For an example that takes this approach and estimates RUL using a degradation model,
see “Wind Turbine High-Speed Bearing Prognosis”.

Survival Models
Survival analysis is a statistical method used to model time-to-event data. It is useful
when you do not have complete run-to-failure histories, but instead have:
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• Only data about the life span of similar components. For example, you might know how
many miles each engine in your ensemble ran before needing maintenance, or how
many hours of operation each machine in your ensemble ran before failure. In this
case, you use reliabilitySurvivalModel. Given the historical information on
failure times of a fleet of similar components, this model estimates the probability
distribution of the failure times. The distribution is used to estimate the RUL of the
test component.

• Both life spans and some other variable data (covariates) that correlates with the RUL.
Covariates, also called environmental variables or explanatory variables, comprise
information such as the component provider, regimes in which the component was
used, or manufacturing batch. In this case, use covariateSurvivalModel. This
model is a proportional hazard survival model which uses the life spans and covariates
to compute the survival probability of a test component.

See Also
covariateSurvivalModel | exponentialDegradationModel | fit |
hashSimilarityModel | linearDegradationModel | pairwiseSimilarityModel |
predictRUL | reliabilitySurvivalModel | residualSimilarityModel

More About
• “Condition Indicators for Monitoring, Fault Detection, and Prediction” on page 3-2
• “Similarity-Based Remaining Useful Life Estimation”
• “Wind Turbine High-Speed Bearing Prognosis”
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Deploy Predictive Maintenance Algorithms
Deployment or integration of a predictive maintenance algorithm is typically the final
stage of the algorithm-development workflow. How you ultimately deploy the algorithm
can also be a consideration in earlier stages of algorithm design. For example, whether
the algorithm runs on embedded hardware, as a stand-alone executable, or as a web
application can have impact on requirements and other aspects of the complete
predictive-maintenance system design. MathWorks® products support several phases of
the process for developing, deploying, and validating predictive maintenance algorithms.

The design-V, a conceptual diagram often used in the context of Model-Based Design, is
also relevant when considering the design and deployment of a predictive maintenance
algorithm. The design-V highlights the key deployment and implementation phases:

Specifications and Requirements
Developing specifications and requirements includes considerations both from the
predictive maintenance algorithm perspective and the deployment perspective. Predictive
maintenance algorithm requirements come from an understanding of the system coupled
with mathematical analysis of the process, its signals, and expected faults. Deployment
requirements can include requirements on:

• Memory and computational power.
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• Operating mode. For instance, the algorithm might be a batch process that runs at
some fixed time interval such as once a day. Or, it might be a streaming process that
runs every time new data is available.

• Maintenance or update of the algorithm. For example, the deployed algorithm might
be fixed, changing only changes through occasional updates. Or, you might develop an
algorithm that adapts and automatically updates as new data is available.

• Where the algorithm runs, such as whether the algorithm must run in a cloud, or be
offered as a web service.

Design and Prototype
This phase of the design-V includes data management, design of data preprocessing,
identification of condition indicators, and training of a classification model for fault
detection or a model for estimating remaining useful life. (See “Designing Algorithms for
Condition Monitoring and Predictive Maintenance”, which provides an overview of the
algorithm-design process.) In the design phase, you often use historic or synthesized data
to test and tune the developed algorithm.

Implement and Deploy
Once you have developed a candidate algorithm, the next phase is to implement and
deploy the algorithm. MathWorks products support many different application needs and
resource constraints, ranging from standalone applications to web services.

• MATLAB Compiler™ — Create standalone applications or shared libraries to execute
algorithms developed using Predictive Maintenance Toolbox. You can use MATLAB
Compiler to deploy MATLAB code in many ways, including as a standalone Windows®
application, a shared library, an Excel® add-in, a Microsoft® .NET assembly, or a
generic COM component. Such applications or libraries run outside the MATLAB
environment using the MATLAB Runtime, which is freely distributable. The MATLAB
Runtime can be packaged and installed with your application, or downloaded during
the installation process. For more information about deployment with MATLAB
Compiler, see “Getting Started with MATLAB Compiler” (MATLAB Compiler).

• MATLAB Production Server™ — Integrate your algorithms into web, database, and
enterprise applications. MATLAB Production Server leverages the MATLAB Compiler
to run your applications on dedicated servers or a cloud. You can package your
predictive maintenance algorithms using MATLAB Compiler SDK™, which extends the
functionality of MATLAB Compiler to let you build C/C++ shared libraries,
Microsoft .NET assemblies, Java® classes, or Python® packages from MATLAB
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programs. Then, you can deploy the generated libraries to MATLAB Production Server
without recoding or creating custom infrastructure.

• ThingSpeak™ — This Internet of Things (IoT) analytics platform service lets you
aggregate, visualize, and analyze live data streams in the cloud. For diagnostics and
prognostics algorithms that run at intervals of 5 minutes or longer, you can use the
ThingSpeak IoT platform to visualize results and monitor the condition of your system.
You can also use ThingSpeak as a quick and easy prototyping platform before
deployment using the MATLAB Production Server. You can transfer diagnostic data
using ThingSpeak web services and use its charting tools to create dashboards for
monitoring progress and generating failure alarms. ThingSpeak can communicate
directly with desktop MATLAB or MATLAB code embedded in target devices.

• MATLAB Coder™ and Simulink Coder — Generate C/C++ code from MATLAB or
Simulink. Many Signal Processing Toolbox, Statistics and Machine Learning Toolbox,
and System Identification Toolbox functions support MATLAB Coder. For example, you
can generate code from algorithms that use the System Identification Toolbox state
estimation (such as extendedKalmanFilter) and recursive parameter estimation
(such as recursiveAR) functionality. See “Functions and Objects Supported for C/C+
+ Code Generation — Category List” (MATLAB Coder) for a more comprehensive list.

One choice you often have to make is to whether to deploy your algorithm on an
embedded system or on the cloud.

A cloud implementation can be useful when you are gathering and storing large amounts
of data on the cloud. Removing the need to transfer data between the cloud and local
machines that are running the prognostics and health monitoring algorithm makes the
maintenance process more effective. Results calculated on the cloud can be made
available through tweets, email notifications, web apps, and dashboards. For cloud
implementations, you can use ThingSpeak or MATLAB Production Server.

Alternatively, the algorithm can run on embedded devices that are closer to the actual
equipment. The main benefits of doing this are that the amount of information sent is
reduced as data is transmitted only when needed, and updates and notifications about
equipment health are immediately available without any delay. For embedded
implementations, you can use MATLAB Compiler,MATLAB Coder, or Simulink Coder to
generate code that runs on a local machine.

A third option is to use a combination of the two. The preprocessing and feature
extraction parts of the algorithm can be run on embedded devices, while the predictive
model can run on the cloud and generate notifications as needed. In systems such as oil
drills and aircraft engines that are run continuously and generate huge amounts of data,
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storing all the data on board or transmitting it is not always viable because of cellular
bandwidth and cost limitations. Using an algorithm that operates on streaming data or on
batches of data lets you store and send data only when needed.

Software and System Integration
After you have developed a deployment candidate, you test and validate algorithm
performance under real-life conditions. This phase can include designing tests for
verification, software-in-the-loop testing, or hardware-in-the-loop testing. This phase is
critical to validate both the requirements and the developed algorithm. It often leads to
revisions in the requirements, the algorithm, or the implementation, iterating on earlier
phases in the design-V.

Production
Finally, you put the algorithm into production. Often this phase includes performance
monitoring and further iteration on the design requirements and algorithm as you gain
operational experience.

More About
• “Designing Algorithms for Condition Monitoring and Predictive Maintenance”
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